Antimicrobial activity of silver-copper coating against aerosols containing surrogate respiratory viruses and bacteria


Por: Reyes-Carmona L., Sepulveda-Robles O.A., Almaguer-Flores A., Bello-Lopez J.M., Ramos-Vilchis C., Rodil S.E.

Publicada: 1 ene 2023
Categoría: Multidisciplinary

Resumen:
The transmission of bacteria and respiratory viruses through expelled saliva microdroplets and aerosols is a significant concern for healthcare workers, further highlighted during the SARS-CoV-2 pandemic. To address this issue, the development of nanomaterials with antimicrobial properties for use as nanolayers in respiratory protection equipment, such as facemasks or respirators, has emerged as a potential solution. In this study, a silver and copper nanolayer called SakCu was deposited on one side of a spun-bond polypropylene fabric using the magnetron sputtering technique. The antibacterial and antiviral activity of the AgCu nanolayer was evaluated against droplets falling on the material and aerosols passing through it. The effectiveness of the nanolayer was assessed by measuring viral loads of the enveloped virus SARS-CoV-2 and viability assays using respiratory surrogate viruses, including PaMx54, PaMx60, PaMx61 (ssRNA, Leviviridae), and PhiX174 (ssDNA, Microviridae) as representatives of non-enveloped viruses. Colony forming unit (CFU) determination was employed to evaluate the survival of aerobic and anaerobic bacteria. The results demonstrated a nearly exponential reduction in SARS-CoV-2 viral load, achieving complete viral load reduction after 24 hours of contact incubation with the AgCu nanolayer. Viability assays with the surrogate viruses showed a significant reduction in viral replication between 2-4 hours after contact. The simulated viral filtration system demonstrated inhibition of viral replication ranging from 39% to 64%. The viability assays with PhiX174 exhibited a 2-log reduction in viral replication after 24 hours of contact and a 16.31% inhibition in viral filtration assays. Bacterial growth inhibition varied depending on the species, with reductions ranging from 70% to 92% for aerobic bacteria and over 90% for anaerobic strains. In conclusion, the AgCu nanolayer displayed high bactericidal and antiviral activity in contact and aerosol conditions. Therefore, it holds the potential for incorporation into personal protective equipment to effectively reduce and prevent the transmission of aerosol-borne pathogenic bacteria and respiratory viruses. © 2023 Public Library of Science. All rights reserved.

Filiaciones:
Reyes-Carmona L.:
 Laboratorio de Biointerfases, DEPeI, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX, Mexico

 Programa de Maestria y Doctorado en Ciencias Medicas Odontologicas y de la Salud, Facultad de Odontología, Universidad Nacional Autónoma de Mexico, CDMX, Mexico

Sepulveda-Robles O.A.:
 Unidad de Investigación Médica en Genetica Humana, UMAE Hospital de Pediatría, Centro Médico Nacional "siglo XXI", Instituto Mexicano Del Seguro Social, CDMX, Mexico

Almaguer-Flores A.:
 Laboratorio de Biointerfases, DEPeI, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX, Mexico

Bello-Lopez J.M.:
 Dirección de Investigación, Hospital Juárez de Mexico, Magdalena de Las Salinas, CDMX, Mexico

Ramos-Vilchis C.:
 Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CDMX, Mexico

Rodil S.E.:
 Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CDMX, Mexico
ISSN: 19326203
Editorial
PUBLIC LIBRARY SCIENCE, 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA, Estados Unidos America
Tipo de documento: Article
Volumen: 18 Número: 12
Páginas:
WOS Id: 001126287700005
ID de PubMed: 38079398
imagen gold, Gold

MÉTRICAS