Dynamic properties for the induced maps on symmetric product suspensions of a topological space


Por: Barragán F., Macías S., Rojas A.

Publicada: 1 ene 2024 Ahead of Print: 1 dic 2023
Resumen:
Given a nondegenerate compact perfect and Hausdorff topological space X, n?N and a function f:X?X, we consider the n-fold symmetric product of X, Fn(X), and the induced function Fn(f):Fn(X)?Fn(X). In this paper, if n=2, we begin the study of the n-fold symmetric product suspension of the topological space X, SFn(X). We study the relationships between the following statements: (1) f?M, (2) Fn(f)?M, and (3) SFn(f)?M, where M is one of the following classes of maps: almost transitive, exact, mixing, transitive, totally transitive, strongly transitive, exactly Devaney chaotic, orbit-transitive, an F-system, scattering, TT++, Touhey, backward minimal, totally minimal, Property P, strong property P or two-sided transitive. © 2023 Elsevier B.V.

Filiaciones:
Barragán F.:
 Instituto de Física y Matemáticas, Universidad Tecnológica de la Mixteca, Carretera a Acatlima, K.M. 2.5, Huajuapan de León, Oaxaca 69000, Mexico

Macías S.:
 Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, México 04510, Mexico

Rojas A.:
 Instituto de Agroingeniería, Universidad del Papaloapan, Av. Ferrocarril, Ciudad Universitaria, Loma Bonita, Oaxaca 68400, Mexico
ISSN: 01668641
Editorial
ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS, Países Bajos
Tipo de documento: Article
Volumen: 342 Número:
Páginas:
WOS Id: 001135654600001

MÉTRICAS