Online-adjusted evolutionary biclustering algorithm to identify significant modules in gene expression data


Por: Galindo-Hernández R., Rodríguez-Vázquez K., Galán-Vásquez E., Hernández Castellanos C.I.

Publicada: 1 ene 2024
Resumen:
Analyzing gene expression data helps the identification of significant biological relationships in genes. With a growing number of open biological datasets available, it is paramount to use reliable and innovative methods to perform in-depth analyses of biological data and ensure that informed decisions are made based on accurate information. Evolutionary algorithms have been successful in the analysis of biological datasets. However, there is still room for improvement, and further analysis should be conducted. In this work, we propose Online-Adjusted EVOlutionary Biclustering algorithm (OAEVOB), a novel evolutionary-based biclustering algorithm that efficiently handles vast gene expression data. OAEVOB incorporates an online-adjustment feature that efficiently identifies significant groups by updating the mutation probability and crossover parameters. We utilize measurements such as Pearson correlation, distance correlation, biweight midcorrelation, and mutual information to assess the similarity of genes in the biclusters. Algorithms in the specialized literature do not address generalization to diverse gene expression sources. Therefore, to evaluate OAEVOB's performance, we analyzed six gene expression datasets obtained from diverse sequencing data sources, specifically Deoxyribonucleic Acid microarray, Ribonucleic Acid (RNA) sequencing, and single-cell RNA sequencing, which are subject to a thorough examination. OAEVOB identified significant broad gene expression biclusters with correlations greater than $0.5$ across all similarity measurements employed. Additionally, when biclusters are evaluated by functional enrichment analysis, they exhibit biological functions, suggesting that OAEVOB effectively identifies biclusters with specific cancer and tissue-related genes in the analyzed datasets. We compared the OAEVOB's performance with state-of-the-art methods and outperformed them showing robustness to noise, overlapping, sequencing data sources, and gene coverage. © The Author(s) 2025. Published by Oxford University Press.

Filiaciones:
Galindo-Hernández R.:
 Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Circuito Escolar ,Ciudad Universitaria, 04510, Mexico city, Mexico

Rodríguez-Vázquez K.:
 Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Circuito Escolar ,Ciudad Universitaria, 04510, Mexico city, Mexico

Galán-Vásquez E.:
 Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Circuito Escolar ,Ciudad Universitaria, 04510, Mexico city, Mexico

Hernández Castellanos C.I.:
 Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Circuito Escolar ,Ciudad Universitaria, 04510, Mexico city, Mexico
ISSN: 14675463
Editorial
Oxford University Press, GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND, Reino Unido
Tipo de documento: Article
Volumen: 26 Número: 1
Páginas:
WOS Id: 001388716000001
ID de PubMed: 39749664
imagen hybrid, All Open Access; Hybrid Gold Open Access