Uniqueness and nondegeneracy of least-energy solutions to fractional Dirichlet problems


Por: Dieb A., Ianni I., Saldaña A.

Publicada: 1 ene 2024
Resumen:
We prove the uniqueness and nondegeneracy of least-energy solutions of a fractional Dirichlet semilinear problem in sufficiently large balls and in more general symmetric domains. Our proofs rely on uniform estimates on growing domains, on the uniqueness and nondegeneracy of the ground state of the problem in RN, and on a new symmetry characterization of the eigenfunctions of the linearized eigenvalue problem in domains which are convex in the x1-direction and symmetric with respect to a hyperplane reflection. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.

Filiaciones:
Dieb A.:
 Department of Mathematics, Faculty of Mathematics and Computer Science, University Ibn Khaldoun of Tiaret, Tiaret, 14000, Algeria

 Laboratoire d’Analyse Nonlinéaire et Mathématiques Appliquées, Université Abou Bakr Belkaïd, Tlemcen, Algeria

Ianni I.:
 Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Università di Roma, Via Scarpa 16, Roma, 00161, Italy

Saldaña A.:
 Instituto de Matemáticas, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria, Ciudad de México, Coyoacán, 04510, Mexico
ISSN: 09442669
Editorial
Springer New York LLC, 233 SPRING ST, NEW YORK, NY 10013 USA, Alemania
Tipo de documento: Article
Volumen: 63 Número: 9
Páginas:
WOS Id: 001352392300002