Moléculas orgánicas adsorbidas sobre superficies metálicas: formación de nanoestructuras y evaluación de sus propiedades físicoquímicas
Por:
Sánchez M.P.H., Guzmán R.B., Marín G.N., Pons J.A.M., Victoria S.D.T., Hernández O.L.E., Isidrón J.A.H., Sánchez M.H.F., Montero O.C.
Publicada:
1 ene 2024
Resumen:
Introduction: Nanostructures were manufactured by adsorbing organic molecules on metal surfaces. The molecules selected for the formation of the nanostructures were: thiourea derivatives 1-(2-furoil)-3-phenylthiourea (T1), 1-(2-furoil)-3-(m-trifuoromethylphenyl)thiou-rea (T4), 1-(2-furoil)-3-o-toliltiourea (T6) and the sodium salt of piperazine dithiocarbamate [Na2 (DTCPz)]. Objective: To evaluate molecular candidates for manufacturing nanostructures with reproducibility, stability and coupling between electronic and molecular properties, useful in technological applications. Methods: They were obtained nanostructures by the immersion of the metallic substrate in the solution of the molecules for 24 hours. They were used scanning tunneling microscopy, X-ray photoelectron spectroscopy and density functional theory to describe the structural, physical and chemical properties of the nanostructures. Results: The formation of sulfur phases, due to the decomposition of Na2 (DTCPz) molecules, during the adsorption process on Au(100) substrates was analyzed by density functional theory and scanning tunneling microscopy. These results explained the coexistence of quasi-rectangular patterns formed by eight (octamers) and six (hexamers) sulfur atoms produced by the expan-sion and contraction of regions on the Au(100) surface. In particular, for the nanostructures formed by thiourea derivatives the images of scanning tunneling microscopy and the results of X-ray photoelectron spectroscopy confirm the adsorption of T1 and T4 on Au(111) and the decomposition of T6 into the well-known sulfur phases: octamers and hexamers. Conclu-sions: A better understanding of the interaction between organosulfur molecules and the gold surface, which in turn favored the development of new potential applications in biosensors, atmospheric sensors, optoelectronic devices, control of heavy ion contamination, energy con-version and medicines. © Los autores, 2024.
Filiaciones:
Sánchez M.P.H.:
Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana, Cuba
Academia de Ciencias de Cuba, La Habana, Cuba
Guzmán R.B.:
Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana, Cuba
Departamento de Química, Facultad de Ciencias. Universidad Autónoma de Madrid, Madrid, Spain
Marín G.N.:
Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana, Cuba
Pons J.A.M.:
Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana, Cuba
Victoria S.D.T.:
Departamento de Química, Facultad de Ciencias. Universidad Autónoma de Madrid, Madrid, Spain
Hernández O.L.E.:
Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana, Cuba
Isidrón J.A.H.:
Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana, Cuba
Sánchez M.H.F.:
Departamento de Fisicoquímica de Nanomateriales, Centro de Nanociencia y Nanotecnología. Universidad Nacional Autónoma de México, Ciudad México, Mexico
Montero O.C.:
Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana, Cuba
|