ZnO nanoparticles-modified polycaprolactone-gelatin membranes for guided/bone tissue regeneration, antibacterial and osteogenic differentiation properties
Por:
Prado-Prone G., Silva-Bermudez P., Rodil S.E., Ganjkhani Y., Moradi A.-R., Méndez F.J., García-Macedo J.A., Bazzar M., Almaguer-Flores A.
Publicada:
1 ene 2023
Resumen:
Periodontitis is a highly prevalent infectious disease that causes the progressive destruction of the periodontal supporting tissues. If left untreated, it can lead to tooth loss impairing oral function, aesthetics, and the patient's overall quality of life. Guided and Bone Tissue Regeneration (GTR/BTR) are surgical therapies based on the placement of a membrane that prevents epithelial growth into the defect, allowing the periodontal/bone cells (including stem cells) to regenerate or restore the affected tissues. The success of these therapies is commonly affected by the local bacterial colonization of the membrane area and its fast biodegradation, causing postoperative infections and a premature rupture of the membrane limiting the regeneration process. This study presents the antibacterial and osteogenic differentiation properties of polycaprolactone-gelatin (PCL-G) electrospun membranes modified with ZnO nanoparticles (ZnO-NPs). The membranes´ chemical composition, surface roughness, biodegradation, water wettability, and mechanical properties under simulated physiological conditions, were analyzed by the close relationship with their biological properties. The PCL-G membranes modified with 1, 3, and 6% w/w of ZnO-NPs showed a significant reduction in the planktonic and biofilm formation of four clinically relevant bacteria;A. actinomycetemcomitansserotype b, P. gingivalis,E. coli, andS. epidermidis. Additionally, the membranes presented appropriate mechanical properties and biodegradation rates to be potentially used in clinical treatments. Notably, the membranes modified with the lowest concentration of ZnO-NPs (1% w/w) stimulated the production of osteoblast markers and calcium deposits in human bone marrow-derived mesenchymal stem cells (BM-MSC) and were biocompatible to human osteoblasts cells (hFOB). These results suggest that the PCL-G membranes with 1% w/w of ZnO-NPs are high-potential candidates for GTR/BTR treatments, as they were the most effective in terms of better antibacterial effectiveness at a lower NPs-concentration while creating a favorable cellular microenvironment for bone growth. Creative Commons Attribution license.
Filiaciones:
Prado-Prone G.:
Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México. Circuito exterior s/n, Ciudad Universitaria, Ciudad de México, 04510, Mexico
Silva-Bermudez P.:
Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa
Rodil S.E.:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México
Ganjkhani Y.:
Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS)Zanjan, Iran
Institut für Technische Optik, Universitat Stuttgart, Pfaffenwaldring 9, Stuttgart, 70569, Germany
Moradi A.-R.:
Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS)Zanjan, Iran
Méndez F.J.:
Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, CICATA-Unidad Morelos, Instituto Politécnico Nacional, Boulevard de la Tecnología 1036 Z-1 P 2/2, Atlacholoaya 62790, Xochitepec, Mexico
García-Macedo J.A.:
Departamento de Estado Sólido, Instituto de Física, Universidad Nacional Autónoma de México
Bazzar M.:
School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
Almaguer-Flores A.:
Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México. Circuito exterior s/n, Ciudad Universitaria, Ciudad de México, 04510, Mexico
hybrid
|