Double Q-PID algorithm for mobile robot control


Por: Carlucho I., De Paula M., Acosta G.G.

Publicada: 1 ene 2019
Resumen:
Many expert systems have been developed for self-adaptive PID controllers of mobile robots. However, the high computational requirements of the expert systems layers, developed for the tuning of the PID controllers, still require previous expert knowledge and high efficiency in algorithmic and software execution for real-time applications. To address these problems, in this paper we propose an expert agent-based system, based on a reinforcement learning agent, for self-adapting multiple low-level PID controllers in mobile robots. For the formulation of the artificial expert agent, we develop an incremental model-free algorithm version of the double Q-Learning algorithm for fast on-line adaptation of multiple low-level PID controllers. Fast learning and high on-line adaptability of the artificial expert agent is achieved by means of a proposed incremental active-learning exploration-exploitation procedure, for a non-uniform state space exploration, along with an experience replay mechanism for multiple value functions updates in the double Q-learning algorithm. A comprehensive comparative simulation study and experiments in a real mobile robot demonstrate the high performance of the proposed algorithm for a real-time simultaneous tuning of multiple adaptive low-level PID controllers of mobile robots in real world conditions. © 2019 Elsevier Ltd

Filiaciones:
Carlucho I.:
 INTELYMEC, Centro de Investigaciones en Física e Ingeniería del Centro CIFICEN-UNICEN-CICpBA-CONICET, Olavarría, 7400, Argentina

De Paula M.:
 INTELYMEC, Centro de Investigaciones en Física e Ingeniería del Centro CIFICEN-UNICEN-CICpBA-CONICET, Olavarría, 7400, Argentina

Acosta G.G.:
 INTELYMEC, Centro de Investigaciones en Física e Ingeniería del Centro CIFICEN-UNICEN-CICpBA-CONICET, Olavarría, 7400, Argentina
ISSN: 09574174
Editorial
Elsevier Science Ltd, Exeter, United Kingdom, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND, Estados Unidos America
Tipo de documento: Article
Volumen: 137 Número:
Páginas: 292-307
WOS Id: 000487167500019