On the quasiconvex hull for a three-well problem in two dimensional linear elasticity


Por: Capella A., Morales L.

Publicada: 1 ene 2022
Resumen:
We provide quantitative inner and outer bounds for the symmetric quasiconvex hull Qe(U) on linear strains generated by three-well sets U in Rsym2×2. In our study, we consider all possible compatible configurations for three wells and prove that if there exist two matrices in U that are rank-one compatible then Qe(U) coincides with its symmetric lamination convex hull Le(U). We complete this result by providing an explicit characterization of Le(U) in terms of the wells in U. Finally, we discuss the optimality of our outer bound and its relationship with quadratic polyconvex functions. © 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Filiaciones:
Capella A.:
 Instituto de Matemáticas-UNAM, Mexico City, Mexico

Morales L.:
 Instituto de Matemáticas-UNAM, Mexico City, Mexico
ISSN: 09442669
Editorial
Springer New York LLC, 233 SPRING ST, NEW YORK, NY 10013 USA, Alemania
Tipo de documento: Article
Volumen: 61 Número: 3
Páginas:
WOS Id: 000779757500005
imagen Green Submitted