Unitarity and symmetries of the multicomponent scattering matrix


Por: Diago-Cisneros L., Flores-Godoy J.J., Fernández-Anaya G., Rodríguez-Coppola H.

Publicada: 1 ene 2020
Categoría: Physics and astronomy (miscellaneous)

Resumen:
We present a theoretical procedure, which is fundamental for unitarity preservation in multicomponent–multiband systems, for a synchronous mixed-particle quantum transport. This study focuses the problem of (N×N) interacting components (with N=2), in the framework of the envelope function approximation (EFA), and the standard unitary properties of the (N=1) scattering matrix are recovered. Rather arbitrary conditions to the basis-set and/or to the output scattering coefficients, are not longer required to preserve flux conservation, if the eigen-functions are orthonormalized in both the configuration and the spinorial spaces. We predict that the present approach, is valid for different kind of multiband–multicomponent physical systems of coupled charge–spin carriers, within the EFA, with small transformations if any. We foretell the interplay for the state-vector transfer matrix eigen-values, together with the large rates of its condition number, as novel complementary tools for a more accurate definition of the threshold for tunneling channels in a scattering experiment. © 2020 Elsevier Inc.

Filiaciones:
Diago-Cisneros L.:
 Facultad de Física, Universidad de La Habana, Vedado, 10400, Cuba

 Departamento de Física y Matemáticas, Universidad Iberoamericana, Ciudad de México, Mexico

Flores-Godoy J.J.:
 Departamento de Ciencias Exactas y Naturales, Facultad de Ingeniería y Tecnologías, Universidad Católica del Uruguay, Montevideo, Uruguay

Fernández-Anaya G.:
 Departamento de Física y Matemáticas, Universidad Iberoamericana, Ciudad de México, Mexico

Rodríguez-Coppola H.:
 Facultad de Física, Universidad de La Habana, Vedado, 10400, Cuba
ISSN: 00034916
Editorial
ACADEMIC PRESS INC ELSEVIER SCIENCE, 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA, Estados Unidos America
Tipo de documento: Article
Volumen: 420 Número:
Páginas:
WOS Id: 000614632600012
imagen

MÉTRICAS