Vision-Based Autonomous Navigation with Evolutionary Learning


Por: Moya-Albor E., Ponce H., Brieva J., Coronel S.L., Chávez-Domínguez R.

Publicada: 1 ene 2020
Resumen:
In this paper, we propose a vision-based autonomous robotics navigation system, it uses a bio-inspired optical flow approach using the Hermite transform and a fuzzy logic controller, the input membership functions were tuned applying a distributed evolutionary learning based on social wound treatment inspired in the Megaponera analis ant. The proposed method was implemented in a virtual robotics system using the V-REP software and in communication con MATLAB. The results show that the optimization of the input fuzzy membership functions improves the navigation behavior against an empirical tuning of them. © 2020, Springer Nature Switzerland AG.

Filiaciones:
Moya-Albor E.:
 Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Ciudad de México, 03920, Mexico

Ponce H.:
 Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Ciudad de México, 03920, Mexico

Brieva J.:
 Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Ciudad de México, 03920, Mexico

Coronel S.L.:
 Departamento de Ingeniería, Instituto Politécnico Nacional, UPIITA, Av. IPN No. 2580. Col. La Laguna Ticomán, Ciudad de México, 07340, Mexico

Chávez-Domínguez R.:
 Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Ciudad de México, 03920, Mexico
ISSN: 03029743
Editorial
Springer Verlag, GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND, Suiza
Tipo de documento: Conference Paper
Volumen: 12469 LNAI Número:
Páginas: 459-471
WOS Id: 000771896000039