An algebraic interpretation of the intertwining operators associated with the discrete Fourier transform
Por:
Atakishiyeva, Mesuma, ATAKISHIYEV, NATIG, Zhedanov, Alexei
Publicada:
1 oct 2021
Resumen:
We show that intertwining operators for the discrete Fourier transform
form a cubic algebra Cq, with q being a root of unity. This algebra is
intimately related to the other two well-known realizations of the cubic
algebra: the Askey-Wilson algebra and the Askey-Wilson-Heun algebra.
Filiaciones:
Atakishiyeva, Mesuma:
Univ Autonoma Estado Morelos, Ctr Invest Ciencias, Cuernavaca 62250, Morelos, Mexico
ATAKISHIYEV, NATIG:
Univ Nacl Autonoma Mexico, Inst Maternat, Unidad Cuernavaca, Cuernavaca 62210, Morelos, Mexico
Zhedanov, Alexei:
Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
|