An algebraic interpretation of the intertwining operators associated with the discrete Fourier transform


Por: Atakishiyeva, Mesuma, ATAKISHIYEV, NATIG, Zhedanov, Alexei

Publicada: 1 oct 2021
Resumen:
We show that intertwining operators for the discrete Fourier transform form a cubic algebra Cq, with q being a root of unity. This algebra is intimately related to the other two well-known realizations of the cubic algebra: the Askey-Wilson algebra and the Askey-Wilson-Heun algebra.



Filiaciones:
Atakishiyeva, Mesuma:
 Univ Autonoma Estado Morelos, Ctr Invest Ciencias, Cuernavaca 62250, Morelos, Mexico

ATAKISHIYEV, NATIG:
 Univ Nacl Autonoma Mexico, Inst Maternat, Unidad Cuernavaca, Cuernavaca 62210, Morelos, Mexico

Zhedanov, Alexei:
 Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
ISSN: 00222488





JOURNAL OF MATHEMATICAL PHYSICS
Editorial
AMER INST PHYSICS, CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA, Estados Unidos America
Tipo de documento: Article
Volumen: 62 Número: 10
Páginas:
WOS Id: 000710789600001

MÉTRICAS