Causal inference with multiple concurrent medications: A comparison of methods and an application in multidrug-resistant tuberculosis


Por: Siddique A.A., Schnitzer M.E., Bahamyirou A., Wang G., Holtz T.H., Migliori G.B., Sotgiu G., Gandhi N.R., Vargas M.H., Menzies D., Benedetti A.

Publicada: 1 ene 2019
Resumen:
This paper investigates different approaches for causal estimation under multiple concurrent medications. Our parameter of interest is the marginal mean counterfactual outcome under different combinations of medications. We explore parametric and non-parametric methods to estimate the generalized propensity score. We then apply three causal estimation approaches (inverse probability of treatment weighting, propensity score adjustment, and targeted maximum likelihood estimation) to estimate the causal parameter of interest. Focusing on the estimation of the expected outcome under the most prevalent regimens, we compare the results obtained using these methods in a simulation study with four potentially concurrent medications. We perform a second simulation study in which some combinations of medications may occur rarely or not occur at all in the dataset. Finally, we apply the methods explored to contrast the probability of patient treatment success for the most prevalent regimens of antimicrobial agents for patients with multidrug-resistant pulmonary tuberculosis. © The Author(s) 2018.

Filiaciones:
Siddique A.A.:
 Department of Statistics, McMaster University, Hamilton, Canada

Schnitzer M.E.:
 Faculty of Pharmacy, Université de Montréal, Montreal, Canada

Bahamyirou A.:
 Faculty of Pharmacy, Université de Montréal, Montreal, Canada

Wang G.:
 Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, Canada

Holtz T.H.:
 Division of Global HIV and TB, Centers for Disease Control and Prevention, New Delhi, India

Migliori G.B.:
 World Health Organization Collaborating Centre for Tuberculosis and Lung Diseases, Fondazione S. Maugeri, Tradate, Italy

Sotgiu G.:
 Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy

Gandhi N.R.:
 Rollins School of Public Health and Emory School of Medicine, Emory University, Atlanta, United States

Vargas M.H.:
 Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico

 Unidad de Investigación Médica en Enfermedades Respiratorias, Instituto Mexicano del Seguro Social, Mexico City, Mexico

Menzies D.:
 Respiratory Epidemiology and Clinical Research Institute, McGill University Health Centre, Montreal, Canada

 Department of Medicine, McGill University, Montreal, Canada

Benedetti A.:
 Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, Canada

 Respiratory Epidemiology and Clinical Research Institute, McGill University Health Centre, Montreal, Canada

 Department of Medicine, McGill University, Montreal, Canada
ISSN: 09622802
Editorial
SAGE Publications, 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND, Reino Unido
Tipo de documento: Article
Volumen: 28 Número: 12
Páginas: 3534-3549
WOS Id: 000486890500004
ID de PubMed: 30381005
imagen