Carleman estimates and controllability results for fully discrete approximations of 1D parabolic equations


Por: GONZALEZ CASANOVA, PEDRO, Hernandez-Santamaria, Victor

Publicada: 1 oct 2021
Resumen:
In this paper, we prove a Carleman estimate for fully discrete approximations of one-dimensional parabolic operators in which the discrete parameters h and ot are connected to the large Carleman parameter. We use this estimate to obtain relaxed observability inequalities which yield, by duality, controllability results for fully discrete linear and semilinear parabolic equations.

Filiaciones:
GONZALEZ CASANOVA, PEDRO:
 Hernandez-Santamaria, V (Corresponding Author), Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico. Gonzalez Casanova, Pedro

Hernandez-Santamaria, Victor:
 Hernandez-Santamaria, V (Corresponding Author), Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico. Gonzalez Casanova, Pedro
ISSN: 10197168
Editorial
Kluwer Academic Publishers, ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES, Países Bajos
Tipo de documento: Article
Volumen: 47 Número: 5
Páginas:
WOS Id: 000694889000001
imagen