Geometry influenced adsorption of fluoxetine over the surface of RuFeO3 and CeFeO3 nanoparticles: Kinetics and thermodynamic studies
Por:
Narayanan, Jayanthi, Hernández J.G., Padilla-Martínez I.I., Thangarasu, Pandiyan, Santos Garay, Sonia Estefania, Palacios Cabrera, Cristian Brayan, Santiago Cuevas, Alan Javier
Publicada:
15 jul 2021
Resumen:
Novel mesoporous ferrite nanoparticles of ruthenium (RuFeO3) and cerium
(CeFeO3) with large surface area were successfully fabricated by
hydrothermal method and applied for the removal of fluoxetine from
aqueous solution. The morphology and physicochemical properties of
meso-porous metal ferrites were characterized by different analytical
techniques. The obtained results showed that the particle size of 20-30
nm for meso-CeFeO3, and 80-100 nm for meso-RuFeO3 respectively. Study of
the adsorption of fluoxetine over metal ferrite nanoparticles was
explored using UV-vis spectroscopy at different experimental conditions
such as temperature, pH, initial fluoxetine concentration and time. The
adsorption data were fitted and analyzed with kinetic and different
adsorption isotherm models, and the results showed that both the metal
ferrites effectively adsorbed fluoxetine (>99%). The maximum adsorption
capacity of 729.6 mg g-1 for CeFeO3, and 683.5 mg g-1 for RuFeO3 at
neutral pH and at 25 x25e6;C were observed. The amount adsorbed over the
surface of metal ferrite nanoparticles increased with increasing initial
fluoxetine concentration, reaction time, and temperature, and the
adsorption performance improved under neutral conditions (pH 7 and 8).
The pseudo-second order kinetic and Langmuir isotherm models
satisfactorily fitted the adsorption data, showing that the adsorption
of fluoxetine involved physical adsorption through intermolecular
electrostatic force between the metal ferrites and fluoxetine which is
further confirmed by intra-particle diffusion model. The observed wide
band/gap, 3.815eV for CeFeO3, and 3.360eV for RuFeO3 respectively showed
their stability towards visible light suggesting their real sample
applicability, recovery and reuse capability involving physisorption
with fluoxetine molecules. In addition, the feasible adsorption process
of fluoxetine is analyzed with its geometry that is determined by
theoretical energy calculations using DFT.
Filiaciones:
Narayanan, Jayanthi:
Division de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de México, Av. Mexiquense s/n esquina Av. Universidad Politécnica, Tultitlan, Estado de México C.P. 54910, Mexico
Hernández J.G.:
Centro Tecnológico, Facultad de Estudios Superiores (FES-Aragón), Universidad Nacional Autónoma de México (UNAM)Estado de México CP 57130, Mexico
Padilla-Martínez I.I.:
Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional (UPIBI-IPN), Ciudad de México, Mexico
Thangarasu, Pandiyan:
Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, D.F., 04510, Mexico
Santos Garay, Sonia Estefania:
Division de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de México, Av. Mexiquense s/n esquina Av. Universidad Politécnica, Tultitlan, Estado de México C.P. 54910, Mexico
Palacios Cabrera, Cristian Brayan:
Division de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de México, Av. Mexiquense s/n esquina Av. Universidad Politécnica, Tultitlan, Estado de México C.P. 54910, Mexico
Santiago Cuevas, Alan Javier:
Division de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de México, Av. Mexiquense s/n esquina Av. Universidad Politécnica, Tultitlan, Estado de México C.P. 54910, Mexico
|