Mean encounter times for multiple random walkers on networks
Por:
Riascos, Alejandro P., Sanders, David P.
Publicada:
16 abr 2021
Resumen:
We introduce a general approach for the study of the collective dynamics
of noninteracting random walkers on connected networks. We analyze the
movement of R independent (Markovian) walkers, each defined by its own
transition matrix. By using the eigenvalues and eigenvectors of the R
independent transition matrices, we deduce analytical expressions for
the collective stationary distribution and the average number of steps
needed by the random walkers to start in a particular configuration and
reach specific nodes the first time (mean first-passage times), as well
as global times that characterize the global activity. We apply these
results to the study of mean first-encounter times for local and
nonlocal random walk strategies on different types of networks, with
both synchronous and asynchronous motion.
Filiaciones:
Riascos, Alejandro P.:
Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, 04510, Mexico
Univ Nacl Autonoma Mexico, Inst Fis, Ciudad Univ, Ciudad De Mexico 04510, Mexico
Sanders, David P.:
Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, 04510, Mexico
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Fis, Ciudad De Mexico 04510, Mexico
MIT, Dept Math, Cambridge, MA 02139 USA
|