Mean encounter times for multiple random walkers on networks


Por: Riascos, Alejandro P., Sanders, David P.

Publicada: 16 abr 2021
Resumen:
We introduce a general approach for the study of the collective dynamics of noninteracting random walkers on connected networks. We analyze the movement of R independent (Markovian) walkers, each defined by its own transition matrix. By using the eigenvalues and eigenvectors of the R independent transition matrices, we deduce analytical expressions for the collective stationary distribution and the average number of steps needed by the random walkers to start in a particular configuration and reach specific nodes the first time (mean first-passage times), as well as global times that characterize the global activity. We apply these results to the study of mean first-encounter times for local and nonlocal random walk strategies on different types of networks, with both synchronous and asynchronous motion.

Filiaciones:
Riascos, Alejandro P.:
 Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, 04510, Mexico

 Univ Nacl Autonoma Mexico, Inst Fis, Ciudad Univ, Ciudad De Mexico 04510, Mexico

Sanders, David P.:
 Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, 04510, Mexico

 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States

 Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Fis, Ciudad De Mexico 04510, Mexico

 MIT, Dept Math, Cambridge, MA 02139 USA
ISSN: 24700045





PHYSICAL REVIEW E
Editorial
AMER PHYSICAL SOC, ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA, Estados Unidos America
Tipo de documento: Article
Volumen: 103 Número: 4
Páginas:
WOS Id: 000650950200003
ID de PubMed: 34005853
imagen