Physiological Network From Anthropometric and Blood Test Biomarkers


Por: Barajas-Martinez, Antonio, Ibarra-Coronado, Elizabeth, Sierra-Vargas, Martha Patricia, Cruz-Bautista, Ivette, Almeda-Valdes, Paloma, Aguilar-Salinas, Carlos A., Fossion, Ruben, Stephens, Christopher R., Vargas-Dominguez, Claudia, Atzatzi-Aguilar, Octavio Gamaliel, Debray-Garcia, Yazmin, Garcia-Torrentera, Rogelio, Bobadilla, Karen, Naranjo Meneses, Maria Augusta, Mena Orozco, Dulce Abril, Lam-Chung, Cesar Ernesto, Martinez Garces, Vania, Lecona, Octavio A., Marin-Garcia, Arlex O., FRANK, ALEJANDRO, RIVERA, ANA LEONOR

Publicada: 12 ene 2021
Resumen:
Currently, research in physiology focuses on molecular mechanisms underlying the functioning of living organisms. Reductionist strategies are used to decompose systems into their components and to measure changes of physiological variables between experimental conditions. However, how these isolated physiological variables translate into the emergence -and collapse- of biological functions of the organism as a whole is often a less tractable question. To generate a useful representation of physiology as a system, known and unknown interactions between heterogeneous physiological components must be taken into account. In this work we use a Complex Inference Networks approach to build physiological networks from biomarkers. We employ two unrelated databases to generate Spearman correlation matrices of 81 and 54 physiological variables, respectively, including endocrine, mechanic, biochemical, anthropometric, physiological, and cellular variables. From these correlation matrices we generated physiological networks by selecting a p-value threshold indicating statistically significant links. We compared the networks from both samples to show which features are robust and representative for physiology in health. We found that although network topology is sensitive to the p-value threshold, an optimal value may be defined by combining criteria of stability of topological features and network connectedness. Unsupervised community detection algorithms allowed to obtain functional clusters that correlate well with current medical knowledge. Finally, we describe the topology of the physiological networks, which lie between random and ordered structural features, and may reflect system robustness and adaptability. Modularity of physiological networks allows to explore functional clusters that are consistent even when considering different physiological variables. Altogether Complex Inference Networks from biomarkers provide an efficient implementation of a systems biology approach that is visually understandable and robust. We hypothesize that physiological networks allow to translate concepts such as homeostasis into quantifiable properties of biological systems useful for determination and quantification of health and disease.

Filiaciones:
Barajas-Martinez, Antonio:
 Univ Nacl Autonoma Mexico, Fac Med, Posgrad Ciencias Biomed, Ciudad De Mexico, Mexico

 Univ Nacl Autonoma Mexico, Ctr Ciencias Complejidad, Ciudad De Mexico, Mexico

Ibarra-Coronado, Elizabeth:
 Univ Nacl Autonoma Mexico, Ctr Ciencias Complejidad, Ciudad De Mexico, Mexico

 Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Ciudad De Mexico, Mexico

Sierra-Vargas, Martha Patricia:
 Inst Nacl Enfermedades Resp, Subdirecc Invest Clin, Ciudad De Mexico, Mexico

Cruz-Bautista, Ivette:
 Univ La Salle, Fac Mexicana Med, Ciudad De Mexico, Mexico

 Inst Nacl Ciencias Med & Nutr Salvador Zubiran, Unidad Invest Enfermedades Metabol, Ciudad De Mexico, Mexico

Almeda-Valdes, Paloma:
 Univ La Salle, Fac Mexicana Med, Ciudad De Mexico, Mexico

 Inst Nacl Ciencias Med & Nutr Salvador Zubiran, Unidad Invest Enfermedades Metabol, Ciudad De Mexico, Mexico

Aguilar-Salinas, Carlos A.:
 Univ Nacl Autonoma Mexico, Ctr Ciencias Complejidad, Ciudad De Mexico, Mexico

 Univ La Salle, Fac Mexicana Med, Ciudad De Mexico, Mexico

 Inst Nacl Ciencias Med & Nutr Salvador Zubiran, Unidad Invest Enfermedades Metabol, Ciudad De Mexico, Mexico

 Tecnol Monterrey, Escuela Med & Ciencias Salud, Monterrey, Mexico

Fossion, Ruben:
 Univ Nacl Autonoma Mexico, Ctr Ciencias Complejidad, Ciudad De Mexico, Mexico

 Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Ciudad De Mexico, Mexico

Stephens, Christopher R.:
 Univ Nacl Autonoma Mexico, Ctr Ciencias Complejidad, Ciudad De Mexico, Mexico

 Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Ciudad De Mexico, Mexico

Vargas-Dominguez, Claudia:
 Inst Nacl Enfermedades Resp, Dept Invest Inmunol & Med Ambiental, Ciudad De Mexico, Mexico

Atzatzi-Aguilar, Octavio Gamaliel:
 Inst Nacl Enfermedades Resp, Dept Invest Inmunol & Med Ambiental, Ciudad De Mexico, Mexico

 Cátedras CONACYT, Ciudad de México, Mexico

Debray-Garcia, Yazmin:
 Inst Nacl Enfermedades Resp, Dept Invest Inmunol & Med Ambiental, Ciudad De Mexico, Mexico

Garcia-Torrentera, Rogelio:
 Inst Nacl Enfermedades Resp, Unidad Urgencias Resp, Ciudad De Mexico, Mexico

Bobadilla, Karen:
 Inst Nacl Enfermedades Resp, Dept Invest Inmunol & Med Ambiental, Ciudad De Mexico, Mexico

Naranjo Meneses, Maria Augusta:
 Inst Nacl Ciencias Med & Nutr Salvador Zubiran, Unidad Invest Enfermedades Metabol, Ciudad De Mexico, Mexico

Mena Orozco, Dulce Abril:
 Inst Nacl Ciencias Med & Nutr Salvador Zubiran, Unidad Invest Enfermedades Metabol, Ciudad De Mexico, Mexico

Lam-Chung, Cesar Ernesto:
 Inst Nacl Ciencias Med & Nutr Salvador Zubiran, Unidad Invest Enfermedades Metabol, Ciudad De Mexico, Mexico

Martinez Garces, Vania:
 Univ Nacl Autonoma Mexico, Fac Med, Programa Estudios Combinados Med, Ciudad De Mexico, Mexico

Lecona, Octavio A.:
 Univ Nacl Autonoma Mexico, Fac Med, Posgrad Ciencias Biomed, Ciudad De Mexico, Mexico

 Univ Nacl Autonoma Mexico, Ctr Ciencias Complejidad, Ciudad De Mexico, Mexico

Marin-Garcia, Arlex O.:
 Univ Nacl Autonoma Mexico, Ctr Ciencias Complejidad, Ciudad De Mexico, Mexico

FRANK, ALEJANDRO:
 Univ Nacl Autonoma Mexico, Ctr Ciencias Complejidad, Ciudad De Mexico, Mexico

 Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Ciudad De Mexico, Mexico

 El Colegio Nacl, Ciudad De Mexico, Mexico

RIVERA, ANA LEONOR:
 Univ Nacl Autonoma Mexico, Ctr Ciencias Complejidad, Ciudad De Mexico, Mexico

 Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Ciudad De Mexico, Mexico
ISSN: 1664042X
Editorial
FRONTIERS RESEARCH FOUNDATION, PO BOX 110, LAUSANNE, 1015, SWITZERLAND, Suiza
Tipo de documento: Article
Volumen: 11 Número:
Páginas:
WOS Id: 000611578700001
ID de PubMed: 33510648