Soliton dynamics of a high-density Bose-Einstein condensate subject to a time varying anharmonic trap


Por: Flores-Calderon, R., Fujioka, J., Espinosa-Ceron, A.

Publicada: 1 ene 2021
Resumen:
In this paper we study the soliton dynamics of a high-density Bose-Einstein condensate (BEC) subject to a time-oscillating trap. The behavior of the BEC is described with a modified Gross-Pitaevskii equation (mGPE) which takes into account three-body losses, atomic feeding and quantum fluctuations (up to a novel high-density term). A variational approximation (VA) is used to study the behavior of a Gaussian pulse in a static double-well potential. Direct numerical solutions of the mGPE corroborate that the center of the pulse exhibits an oscillatory behavior (as the VA predicts), and show a novel phenomenon of fragmentation and regeneration (FR). It is shown that this FR process is destroyed if we consider a potential with a time-dependent quadratic term, but the FR survives if the time dependence is introduced in a cubic term. Comparison between the VA and the numerical solution revealed an excellent agreement when the oscillations of the pulse remain in one of the potential wells. The effects of the quantum fluctuating terms on the FR process are studied. Finally, variational results using a supergaussian trial function are obtained. © 2020

Filiaciones:
Flores-Calderon, R.:
 Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510, Mexico

 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510, Mexico

Fujioka, J.:
 Departamento de Sistemas Complejos, Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510, Mexico

Espinosa-Ceron, A.:
 Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510, Mexico
ISSN: 09600779
Editorial
Elsevier Science Ltd, Exeter, United Kingdom, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND, Reino Unido
Tipo de documento: Article
Volumen: 143 Número:
Páginas:
WOS Id: 000620179400007