Adaptive Control of 3-DOF Delta Parallel Robot


Por: Aguilar-Mejia, O., Escorcia-Hernandez, J. M., Tapia-Olvera, R., Minor-Popocatl, H., Valderrabano-Gonzalez, A.

Publicada: 1 ene 2019
Resumen:
In this paper an adaptive neural network controller is used to solve the problem of tracking trajectories of a delta parallel robot (DPR) with three degrees of freedom. This controller used an adaptive artificial B-Spline neural network (BSNN) for online training. The BSNN improves the performance of DPR on a closed loop and update the parameters of control scheme online. This algorithm sets the control signal without using a detailed mathematical model nor exact values of the parameters of the DPR. The proposed adaptive controller was compared with a traditional control based a PD+G contoller. Analytical and numerical results prove the robust and efficient performance of the adaptive neural network controller.

Filiaciones:
Aguilar-Mejia, O.:
 (Corresponding Author), UPAEP Univ, Dept Invest & Posgrad, Puebla, Mexico

 UPAEP Univ, Dept Invest & Posgrad, Puebla, Mexico

Escorcia-Hernandez, J. M.:
 Univ Politecn Tulancingo, Tulancingo, Hidalgo, Mexico

Tapia-Olvera, R.:
 Univ Nacl Autonoma Mexico, Cd De Mexico, Mexico

Minor-Popocatl, H.:
 UPAEP Univ, Puebla, Mexico

Valderrabano-Gonzalez, A.:
 Univ Panamer, Fac Ingn, Zapopan, Jalisco, Mexico
ISSN: 23815515





IEEE International Autumn Meeting on Power Electronics and Computing
Editorial
IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA, Estados Unidos America
Tipo de documento: Proceedings Paper
Volumen: Número:
Páginas:
WOS Id: 000569520800047