Entropy of induced dendrite homeomorphism C(F): C(D) ? C(D)


Por: Hernández P., Méndez H.

Publicada: 1 ene 2019
Categoría: Geometry and topology

Resumen:
Let f: D ? D be a dendrite homeomorphism. Let C(D) denote the hyperspace of all subcontinua of D endowed with the Hausdorff metric. Let C(f): C(D) ? C(D) be the induced homeomorphism in hyperspace C(D). We show in this paper that the topological entropy of C(f) has only two possible values: 0 or 8. Also we show that the entropy of C(f) is 8 if and only if there exists a point x ? D such that x is not an element of the minimal subdendrite of D that contains the union a(x, f) ? ?(x, f). © 2019 Topology Proceedings.

Filiaciones:
Hernández P.:
 Departamento de Matemáticas, Facultad de Ciencias, UNAM, Ciudad Universitaria, Cd. Mx., C.P. 04510, Mexico

Méndez H.:
 Departamento de Matemáticas, Facultad de Ciencias, UNAM, Ciudad Universitaria, Cd. Mx., C.P. 04510, Mexico
ISSN: 01464124
Editorial
Auburn University, Estados Unidos America
Tipo de documento: Article
Volumen: 54 Número:
Páginas: 335-359

MÉTRICAS