Integral Control Design using the Implicit Lyapunov Function Approach
Por:
Mercado-Uribe, Angel, Moreno, Jaime A., Polyakov, Andrey, Efimov, Denis
Publicada:
1 ene 2019
Resumen:
In this paper, we design homogeneous integral controllers of arbitrary non positive homogeneity degree for a system in the normal form with matched uncertainty/perturbation. The controllers are able to reach finite-time convergence, rejecting matched constant (Lipschitz, in the discontinuous case) perturbations. For the design, we use the Implicit Lyapunov Function method combined with an explicit Lyapunov function for the addition of the integral term. © 2019 IEEE.
Filiaciones:
Mercado-Uribe, Angel:
Universidad Nacional Autónoma de México (UNAM), Instituto de Ingeniería, Coyoacán, D.F, México, 04510, Mexico
Univ Nacl Autonoma Mexico, Inst Ingn, Coyoacan 04510, DF, Mexico
Moreno, Jaime A.:
Universidad Nacional Autónoma de México (UNAM), Instituto de Ingeniería, Coyoacán, D.F, México, 04510, Mexico
Univ Nacl Autonoma Mexico, Inst Ingn, Coyoacan 04510, DF, Mexico
Polyakov, Andrey:
Inria, Univ. Lille, CNRS, UMR 9189 - CRIStAL, Lille, F-59000, France
Univ Lille, CNRS, INRIA, CRIStAL,UMR 9189, F-59000 Lille, France
ITMO Univ, 49 Av Kronverkskiy, St Petersburg 197101, Russia
Efimov, Denis:
Inria, Univ. Lille, CNRS, UMR 9189 - CRIStAL, Lille, F-59000, France
Univ Lille, CNRS, INRIA, CRIStAL,UMR 9189, F-59000 Lille, France
ITMO Univ, 49 Av Kronverkskiy, St Petersburg 197101, Russia
|