Le's vanishing polyhedron for a family of mixed functions


Por: Cisneros-Molina J.L., Menegon, Aurelio

Publicada: 1 dic 2019 Ahead of Print: 1 oct 2019
Categoría: Mathematics (miscellaneous)

Resumen:
We study real analytic isolated singularities of type f:(Cn+m+1,0)->(C,0) with f(z,w)=g(z)+ n-ary sumation i=1m+1hi(wi,w over bar i), where g is holomorphic and each hi is a mixed polynomial, with z=(z1,MIDLINE HORIZONTAL ELLIPSIS,zn) and w=(w1,MIDLINE HORIZONTAL ELLIPSIS,wm+1). We construct a Le's vanishing polyhedron for f, which describes the degeneration of its Milnor fiber Ff to the singular fiber. Then we prove that Ff is homotopy equivalent to the join Fg*Fh1*MIDLINE HORIZONTAL ELLIPSIS*Fhm+1, where Fg is the Milnor fiber of g and Fhi is the Milnor fiber of hi. This implies that Ff has the homotopy type of a bouquet of spheres Sn+m. So we can define the Milnor number mu(f) as the number of spheres in that bouquet, as in the complex setting.

Filiaciones:
Cisneros-Molina J.L.:
 Instituto de Matemáticas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Chamilpa, Cuernavaca, Morelos, Mexico

Menegon, Aurelio:
 Departamento de Matemática, Universidade Federal da Paraíba, CEP 58051–900 - Cidade Universitária, João Pessoa, Paraíba, Brazil

 Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil

Univ Nacl Autonoma Mexico, Inst Matemat, Ave Univ S-N, Cuernavaca, Morelos, Mexico
ISSN: 00246093





BULLETIN OF THE LONDON MATHEMATICAL SOCIETY
Editorial
OXFORD UNIV PRESS, GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND, Reino Unido
Tipo de documento: Article
Volumen: 51 Número: 6
Páginas: 1022-1038
WOS Id: 000491762500001