A note on the Erdos-Faber-Lovasz Conjecture: quasigroups and complete digraphs


Por: Araujo-Pardo, G., Rubio-Montiel, C., Vazquez-Avila, A.

Publicada: 1 ene 2019
Categoría: Mathematics (miscellaneous)

Resumen:
A decomposition of a simple graph G is a pair (G, P) where P is a set of subgraphs of G, which partitions the edges of G in the sense that every edge of G belongs to exactly one subgraph in P. If the elements of P are induced subgraphs then the decomposition is denoted by [G, P]. A k-P- coloring of a decomposition (G, P) is a surjective function that assigns to the edges of G a color from a k-set of colors, such that all edges of H is an element of P have the same color, and, if H-1, H-2 is an element of P with V(H-1)boolean AND V(H-2) not equal 0 then E(H-1) and E(H-2) have different colors. The chromatic index x' ((G, P)) of a decomposition (G, P) is the smallest number k for which there exists a k-P-coloring of (G, P). The well-known Erdos-Faber-Lovasz Conjecture states that any decomposition [K-n, P] satisfies x' ([K-n, P]) <= n. We use quasigroups and complete digraphs to give a new family of decompositions that satisfy the conjecture.

Filiaciones:
Araujo-Pardo, G.:
 Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico

Rubio-Montiel, C.:
 Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico

 Comenius Univ, Dept Algebra, Bratislava 84248, Slovakia

Vazquez-Avila, A.:
 Univ Aeronaut Queretaro, Subdirecc Ingn & Posgrad, Queretaro 76270, Mexico
ISSN: 03817032





Ars Combinatoria
Editorial
CHARLES BABBAGE RES CTR, PO BOX 272 ST NORBERT POSTAL STATION, WINNIPEG, MB R3T 2N2, CANADA, Canada
Tipo de documento: Article
Volumen: 143 Número:
Páginas: 53-57
WOS Id: 000476581000006