Hamiltonian normal cayley graphs
Por:
Montellano-Ballesteros J.J., Arguello A.S.
Publicada:
1 ene 2019
Resumen:
A variant of the Lovász Conjecture on hamiltonian paths states that every finite connected Cayley graph contains a hamiltonian cycle. Given a finite group G and a connection set S, the Cayley graph Cay(G, S) will be called normal if for every g ? G we have that g -1 Sg = S. In this paper we present some conditions on the connection set of a normal Cayley graph which imply the existence of a hamiltonian cycle in the graph. © 2019 Sciendo. All rights reserved.
Filiaciones:
Montellano-Ballesteros J.J.:
Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, C.P. 04510, Mexico
Arguello A.S.:
Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, C.P. 04510, Mexico
Univ Nacl Autonoma Mexico, Inst Matemat, Ciudad Univ, Mexico City 04510, DF, Mexico
|