Hamiltonian normal cayley graphs


Por: Montellano-Ballesteros J.J., Arguello A.S.

Publicada: 1 ene 2019
Resumen:
A variant of the Lovász Conjecture on hamiltonian paths states that every finite connected Cayley graph contains a hamiltonian cycle. Given a finite group G and a connection set S, the Cayley graph Cay(G, S) will be called normal if for every g ? G we have that g -1 Sg = S. In this paper we present some conditions on the connection set of a normal Cayley graph which imply the existence of a hamiltonian cycle in the graph. © 2019 Sciendo. All rights reserved.

Filiaciones:
Montellano-Ballesteros J.J.:
 Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, C.P. 04510, Mexico

Arguello A.S.:
 Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, C.P. 04510, Mexico

Univ Nacl Autonoma Mexico, Inst Matemat, Ciudad Univ, Mexico City 04510, DF, Mexico
ISSN: 12343099
Editorial
UNIV ZIELONA GORA, C/O PROF Z SZAFRANA 4A, ZIELONA GORA, 65-516, POLAND, Polonia
Tipo de documento: Article
Volumen: 39 Número: 2
Páginas: 705-730
WOS Id: 000470122100010