Dissipative structures in shear-thickening complex fluids


Por: Turcio, M., Chavez, A. E., Lopez-Aguilar, J. E., Vargas, R. O., Capella, A., Manero, O.

Publicada: 1 nov 2018
Categoría: Condensed matter physics

Resumen:
The main objective of this work is to demonstrate that non-local terms of the structure variable and shear-stress is a sufficient condition to predict multiple bands in rheologically complex fluids, i.e., shear-thickening fluids. Here, shear bands are considered as dissipative structures arising from spatial instabilities (Turing patterns) rather than the classical mechanical instability. In the present analysis, a monotonic relation between shear-stress and shear-rate holds. The formation of banded patterns is discussed for shear-thickening fluids with a model that consist of an upper-convected Maxwell-type constitutive equation coupled to an evolution equation for the structure variable, in which both non-local terms of the stress and of the structure variable are included (non-local Bautista-Manero-Puig model). The Turing mechanism is used to predict a critical point for primary instabilities (stable bands), while the amplitude formalism is used to predict secondary instabilities and marginal curves. © 2018 Author(s).

Filiaciones:
Turcio, M.:
 Univ Nacl Autonoma Mexico, Inst Invest Mat, AP 70-360, Mexico City 04510, DF, Mexico

 Facultad de Química, Departamento de Ingeniería Química, Universidad Nacional Autonóma de México, Ciudad Universitaria, Coyoacán, CDMX, 04510, Mexico

 Univ Nacl Autonoma Mexico, Dept Ingn Quim, Fac Quim, Ciudad Univ, Mexico City 04510, DF, Mexico

 Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, México, CDMX04510, Mexico

Chavez, A. E.:
 Facultad de Química, Departamento de Ingeniería Química, Universidad Nacional Autonóma de México, Ciudad Universitaria, Coyoacán, CDMX, 04510, Mexico

 Univ Nacl Autonoma Mexico, Dept Ingn Quim, Fac Quim, Ciudad Univ, Mexico City 04510, DF, Mexico

Lopez-Aguilar, J. E.:
 Facultad de Química, Departamento de Ingeniería Química, Universidad Nacional Autonóma de México, Ciudad Universitaria, Coyoacán, CDMX, 04510, Mexico

 Univ Nacl Autonoma Mexico, Dept Ingn Quim, Fac Quim, Ciudad Univ, Mexico City 04510, DF, Mexico

Vargas, R. O.:
 ESIME Azcapotzalco, Instituto Politécnico Nacional, Avenida de las Granjas No. 682, Colonia Santa Catarina, Delegación Azcapotzalco, México, CDMX, 02250, Mexico

 Inst Politecn Nacl, ESIME Azcapotzalco, Ave Granjas 682, Mexico City 02250, DF, Mexico

Capella, A.:
 Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico

 Instituto de Matemáticas, Universidad Nacional Autónoma de México, México, CDMX, 04510, Mexico

Manero, O.:
 Univ Nacl Autonoma Mexico, Inst Invest Mat, AP 70-360, Mexico City 04510, DF, Mexico

 Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, México, CDMX04510, Mexico
ISSN: 10706631
Editorial
American Inst of Physics, Woodbury, NY, United States, CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA, Estados Unidos America
Tipo de documento: Article
Volumen: 30 Número: 11
Páginas:
WOS Id: 000451733300029