Topology in the 2d Heisenberg Model under Gradient Flow


Por: Sandoval, I. O., Bietenholz, W., De Forcrand, P., Gerber, U., Mejia-Diaz, H.

Publicada: 1 ene 2017
Categoría: Physics and astronomy (miscellaneous)

Resumen:
The 2d Heisenberg model - or 2d O(3) model - is popular in condensed matter physics, and in particle physics as a toy model for QCD. Along with other analogies, it shares with 4d Yang-Mills theories, and with QCD, the property that the configurations are divided in topological sectors. In the lattice regularisation the topological charge Q can still be defined such that Q is an element of Z. It has generally been observed, however, that the topological susceptibility chi t = < Q(2)>/V does not scale properly in the continuum limit, i.e. that the quantity chi t xi(2) diverges for xi -> infinity (where xi is the correlation length in lattice units). Here we address the question whether or not this divergence persists after the application of the Gradient Flow.

Filiaciones:
Sandoval, I. O.:
 Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Ap 70-543, Ciudad De Mexico 04510, Mexico

Bietenholz, W.:
 Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Ap 70-543, Ciudad De Mexico 04510, Mexico

De Forcrand, P.:
 ETH, Inst Theoret Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland

 CERN, Theory Div, CH-1211 Geneva 23, Switzerland

Gerber, U.:
 Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Ap 70-543, Ciudad De Mexico 04510, Mexico

 Univ Michoacana, Inst Fis & Matemat, Edificio C-3,Apdo Postal 2-82, Morelia 58040, Michoacan, Mexico

Mejia-Diaz, H.:
 Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Ap 70-543, Ciudad De Mexico 04510, Mexico
ISSN: 17426588
Editorial
IOP PUBLISHING LTD, DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND, Reino Unido
Tipo de documento: Proceedings Paper
Volumen: 912 Número: 1
Páginas:
WOS Id: 000416372100024

MÉTRICAS