Topology in the 2d Heisenberg Model under Gradient Flow
Por:
Sandoval, I. O., Bietenholz, W., De Forcrand, P., Gerber, U., Mejia-Diaz, H.
Publicada:
1 ene 2017
Categoría:
Physics and astronomy (miscellaneous)
Resumen:
The 2d Heisenberg model - or 2d O(3) model - is popular in condensed
matter physics, and in particle physics as a toy model for QCD. Along
with other analogies, it shares with 4d Yang-Mills theories, and with
QCD, the property that the configurations are divided in topological
sectors. In the lattice regularisation the topological charge Q can
still be defined such that Q is an element of Z. It has generally been
observed, however, that the topological susceptibility chi t = < Q(2)>/V
does not scale properly in the continuum limit, i.e. that the quantity
chi t xi(2) diverges for xi -> infinity (where xi is the correlation
length in lattice units). Here we address the question whether or not
this divergence persists after the application of the Gradient Flow.
Filiaciones:
Sandoval, I. O.:
Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Ap 70-543, Ciudad De Mexico 04510, Mexico
Bietenholz, W.:
Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Ap 70-543, Ciudad De Mexico 04510, Mexico
De Forcrand, P.:
ETH, Inst Theoret Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
CERN, Theory Div, CH-1211 Geneva 23, Switzerland
Gerber, U.:
Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Ap 70-543, Ciudad De Mexico 04510, Mexico
Univ Michoacana, Inst Fis & Matemat, Edificio C-3,Apdo Postal 2-82, Morelia 58040, Michoacan, Mexico
Mejia-Diaz, H.:
Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Ap 70-543, Ciudad De Mexico 04510, Mexico
|