Optical and thermal properties of selective absorber coatings under CSP conditions


Por: Macias J.D., Herrera-Zamora D.M., Lizama-Tzec F.I., Bante-Guerra J., Arés-Muzio O.E., Oskam G., Rubio, H.R.-P., Alvarado-Gil J.J., Arancibia-Bulnes C., Ramos-Sánchez V., Villafán-Vidales H.I.

Publicada: 1 ene 2017
Categoría: Physics and astronomy (miscellaneous)

Resumen:
Concentrating solar power (CSP) systems use solar absorbers to convert sunlight into thermal electric power. In CSP systems, a high reflective surface focuses sunlight onto a receiver that captures the solar energy and converts it into heat. The operation of high efficiency CSP systems involves improvements in the performance of the coatings of the solar absorption materials. To accomplish this, novel, more efficient selective coatings are being developed with high solar absorptance and low thermal losses at their operation temperature. Heat losses in a CSP system occur by three mechanisms: conduction, convection and radiation. It has been widely documented that energy losses increase with increasing operating temperature of CSP systems, and the precise knowledge of the thermophysical properties of the materials involved in CSP systems may allow us to increase the efficiency of systems. In this work, we applied the pulsed photoradiometry technique (PPTR) to evaluate the changes in the thermophysical properties of selective coatings on a variety of substrates as a function of temperature. Three types of coatings deposited with two different techniques on three types of substrate were examined: commercial coatings based on titanium oxynitride deposited by sputtering on substrates of copper and aluminum, coatings based on black nickel deposited by electrochemical methods on substrates of steel, and coatings based on black cobalt deposited by electrochemical methods on substrates of steel and copper. Values of the thermal diffusivity and thermal conductivity were obtained in the temperature range of 25 to 550 °C. Optical reflectance measurements have been performed in order to provide an estimate of the dependence of the thermal emittance on temperature using the black body radiation theory. © 2017 Author(s).

Filiaciones:
Macias J.D.:
 Área de Ingeniería en Recursos Energéticos, Universidad Autónoma Metropolitana, México, D.F., Mexico

Herrera-Zamora D.M.:
 Departmento de Física Aplicada, CINVESTAV-IPN, Mérida Yucatán, Mexico

Lizama-Tzec F.I.:
 Departmento de Física Aplicada, CINVESTAV-IPN, Mérida Yucatán, Mexico

Bante-Guerra J.:
 Departmento de Física Aplicada, CINVESTAV-IPN, Mérida Yucatán, Mexico

Arés-Muzio O.E.:
 Departmento de Física Aplicada, CINVESTAV-IPN, Mérida Yucatán, Mexico

Oskam G.:
 Departmento de Física Aplicada, CINVESTAV-IPN, Mérida Yucatán, Mexico

Alvarado-Gil J.J.:
 Departmento de Física Aplicada, CINVESTAV-IPN, Mérida Yucatán, Mexico

Arancibia-Bulnes C.:
 Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos, Mexico

Ramos-Sánchez V.:
 Facultad de Química, Universidad Autónoma de Chihuahua, Chihuahua, Mexico

Villafán-Vidales H.I.:
 Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos, Mexico
ISSN: 0094243X
Editorial
AMER INST PHYSICS, 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA, Estados Unidos America
Tipo de documento: Conference Paper
Volumen: 1850 Número:
Páginas:
WOS Id: 000417377900167