On the geometric structure of certain real algebraic surfaces
Por:
Guadarrama-García, M.A., Ortiz-Rodríguez, A.
Publicada:
1 dic 2017
Categoría:
Geometry and topology
Resumen:
In this paper we study the affine geometric structure of the graph of a polynomial f? R[ x, y]. We provide certain criteria to determine when the parabolic curve is compact and when the unbounded component of its complement is hyperbolic or elliptic. We analyse the extension to the real projective plane of both fields of asymptotic lines and the Poincaré index at its singular points at infinity. We exhibit an index formula for the field of asymptotic lines involving the number of connected components of the projective Hessian curve of f and the number of godrons. As an application of this investigation, we obtain upper bounds, respectively, for the number of godrons having an interior tangency and when they have an exterior tangency. © 2017, Springer Science+Business Media Dordrecht.
Filiaciones:
Guadarrama-García, M.A.:
Instituto de Matemáticas, Universidad Nacional Autónoma de México, Área de la Inv. Científica, Circuito Exterior C.U., Coyoacán, México, D.F., Mexico
Ortiz-Rodríguez, A.:
Instituto de Matemáticas, Universidad Nacional Autónoma de México, Área de la Inv. Científica, Circuito Exterior C.U., Coyoacán, México, D.F., Mexico
|