Convexifying monotone polygons while maintaining internal visibility


Por: Aichholzer O., Cetina M., Fabila-Monroy R., Leaños J., Salazar G., Urrutia J.

Publicada: 1 ene 2012
Resumen:
Let P be a simple polygon on the plane. Two vertices of P are visible if the open line segment joining them is contained in the interior of P. In this paper we study the following questions posed in [8,9]: (1) Is it true that every non-convex simple polygon has a vertex that can be continuously moved such that during the process no vertex-vertex visibility is lost and some vertex-vertex visibility is gained? (2) Can every simple polygon be convexified by continuously moving only one vertex at a time without losing any internal vertex-vertex visibility during the process? We provide a counterexample to (1). We note that our counterexample uses a monotone polygon. We also show that question (2) has a positive answer for monotone polygons. © 2012 Springer-Verlag.

Filiaciones:
Aichholzer O.:
 Institute for Software Technology, University of Technology, Graz, Austria

Cetina M.:
 Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico

Fabila-Monroy R.:
 Departamento de Matemáticas, CINVESTAV, Mexico

Leaños J.:
 Unidad Académica de Matemáticas, Universidad Autónoma de Zacatecas, Mexico

Salazar G.:
 Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico

Urrutia J.:
 Instituto de Matemáticas, Universidad Nacional Autónoma de México, Mexico
ISSN: 03029743
Editorial
Springer Verlag, GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND, Suiza
Tipo de documento: Conference Paper
Volumen: 7579 LNCS Número:
Páginas: 98-108
imagen