Observer design for a class of hyperbolic PDE equation based on a Distributed Super Twisting Algorithm
Por:
Miranda R., Moreno J.A., Chairez J., Fridman L.
Publicada:
1 ene 2012
Resumen:
In this paper a new version of a Distributed Super-Twisting Algorithm (DSTA), including a linear term, is proposed. It is an extension to infinite dimensional spaces of the Generalized Super-Twisting Algorithm for finite dimensional systems proposed in [14], [15], [3]. The proposed algorithm is different from the one presented previously by [18], [22] and it retains all the main properties of its finite dimensional counterpart, that is, it converges in finite time to zero, even in presence of bounded perturbations, in contrast with the asymptotic convergence and weaker robustness properties that have been shown for the algorithm in [18], [22]. This properties are shown using a strong Lyapunov functional. As application of this algorithm the finite time and robust state estimation problem for a class of uncertain hyperbolic PDEs is considered. A numerical example illustrates the effectiveness of the proposed method. © 2012 IEEE.
Filiaciones:
Miranda R.:
Eléctrica y Computación, Instituto de Ingeniería, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico
Moreno J.A.:
Eléctrica y Computación, Instituto de Ingeniería, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico
Chairez J.:
Departmento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Mexico City, Mexico
Fridman L.:
Departamento de Ingeniería de Control Y Robótica, Facultad de Ingeniera, Universidad Nacional Autónoma de México, México City, Mexico
|