Preservation of stability and synchronization in nonlinear systems
Por:
Fernández-Anaya G., Flores-Godoy J.J., Femat R., Álvarez-Ramírez J.J.
Publicada:
1 ene 2007
Categoría:
Physics and Astronomy (miscellaneous)
Resumen:
Preservation of stability in the presence of structural and/or parametric changes is an important issue in the study of dynamical systems. A specific case is the synchronization of chaos in complex networks where synchronization should be preserved in spite of changes in the network parameters and connectivity. In this work, a methodology to establish conditions for preservation of stability in a class of dynamical system is given in terms of Lyapunov methods. The idea is to construct a group of dynamical transformations under which stability is retained along certain manifolds. Some synchronization examples illustrate the results. © 2007 Elsevier B.V. All rights reserved.
Filiaciones:
Fernández-Anaya G.:
Departamento de Física y Matemáticas, Universidad Iberoamericana, Prol. Paseo de la Reforma 880, Lomas de Santa Fe, Mexico, D.F. 01210, Mexico
Flores-Godoy J.J.:
Departamento de Física y Matemáticas, Universidad Iberoamericana, Prol. Paseo de la Reforma 880, Lomas de Santa Fe, Mexico, D.F. 01210, Mexico
Femat R.:
División de Matemáticas Aplicadas y Sistemas Computacionales, IPICyT, Camino a la Presa San Jose 2055, San Luis Potosi San Luis Potosi, 78216, Mexico
Álvarez-Ramírez J.J.:
Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico, D.F. 09340, Mexico
|