Distribution of eigenvalues for the modular group
Por:
Bogomolny E., Leyvraz F., Schmit C.
Publicada:
1 ene 1996
Resumen:
The two-point correlation functions of energy levels for free motion on the modular domain, both with periodic and Dirichlet boundary conditions, are explicitly computed using a generalization of the Hardy-Littlewood method. It is shown that in the limit of small separations they show an uncorrelated behaviour and agree with the Poisson distribution but they have prominent number-theoretical oscillations at larger scale. The results agree well with numerical simulations.
Filiaciones:
Bogomolny E.:
Div. de Physique Théorique, U. Rech. Universites Paris 11 P., Inst. de Physique Nucléaire, F-91406 Orsay Cedex, France
L.D. Landau Inst. of Theor. Physics, 142432 Cherogolovka, Russian Federation
Leyvraz F.:
Div. de Physique Théorique, U. Rech. Universites Paris 11 P., Inst. de Physique Nucléaire, F-91406 Orsay Cedex, France
Instituto de Física, University of Mexico, Apdo. postal 20-364, 01000 Mexico City, Mexico
Schmit C.:
Div. de Physique Théorique, U. Rech. Universites Paris 11 P., Inst. de Physique Nucléaire, F-91406 Orsay Cedex, France
|