Quantum spectra and transition from regular to chaotic classical motion
Por:
Seligman T.H., Verbaarschot J.J.M., Zirnbauer M.R.
Publicada:
1 ene 1984
Resumen:
We compute numerically the eigenvalues of a family of two-dimensional Hamiltonians which give rise to regular or chaotic classical motion depending on the particular choice of parameters. A close relationship is found between the spectral statistics and the fraction of classical phase space covered by chaotic trajectories. In the extreme regular and chaotic cases the system displays Poisson and Gaussian-orthogonal-ensemble statistics, respectively. A one-parameter random-matrix model is proposed to describe the spectral statistics in intermediate situations. © 1984 The American Physical Society.
Filiaciones:
Seligman T.H.:
Max-Planck-Institut fur Kernphysik, Institut fur Theoretische Physik, Universitat Heidelberg, D-6900 Heidelberg, Germany
Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
Verbaarschot J.J.M.:
Max-Planck-Institut fur Kernphysik, Institut fur Theoretische Physik, Universitat Heidelberg, D-6900 Heidelberg, Germany
Zirnbauer M.R.:
Max-Planck-Institut fur Kernphysik, Institut fur Theoretische Physik, Universitat Heidelberg, D-6900 Heidelberg, Germany
|