Rich structure in the correlation matrix spectra in non-equilibrium steady states


Por: Biswas, Soham, Leyvraz, Francois, Monroy Castillero, Paulino, Seligman, Thomas H.

Publicada: 17 ene 2017
Categoría: Multidisciplinary

Resumen:
It has been shown that, if a model displays long-range (power-law) spatial correlations, its equal-Time correlation matrix will also have a power law tail in the distribution of its high-lying eigenvalues. The purpose of this paper is to show that the converse is generally incorrect: A power-law tail in the high-lying eigenvalues of the correlation matrix may exist even in the absence of equal-Time power law correlations in the initial model. We may therefore view the study of the eigenvalue distribution of the correlation matrix as a more powerful tool than the study of spatial Correlations, one which may in fact uncover structure, that would otherwise not be apparent. Specifically, we show that in the Totally Asymmetric Simple Exclusion Process, whereas there are no clearly visible correlations in the steady state, the eigenvalues of its correlation matrix exhibit a rich structure which we describe in detail. © The Author(s) 2017.

Filiaciones:
Biswas, Soham:
 Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Cuernavaca, Morelos, Mexico

Leyvraz, Francois:
 Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Cuernavaca, Morelos, Mexico

 Ctr Int Ciencias, Cuernavaca, Morelos, Mexico

Monroy Castillero, Paulino:
 Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Cuernavaca, Morelos, Mexico

Seligman, Thomas H.:
 Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Cuernavaca, Morelos, Mexico

 Ctr Int Ciencias, Cuernavaca, Morelos, Mexico
ISSN: 20452322
Editorial
NATURE PUBLISHING GROUP, MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND, Reino Unido
Tipo de documento: Article
Volumen: 7 Número:
Páginas:
WOS Id: 000391936700001
ID de PubMed: 28094322