Spinor representation of Lorentzian surfaces in R2,2


Por: Bayard P., Patty V.

Publicada: 1 sep 2015
Resumen:
We prove that an isometric immersion of a simply connected Lorentzian surface in R2,2 is equivalent to a normalised spinor field solution of a Dirac equation on the surface. Using the quaternions and the Lorentz numbers, we also obtain an explicit representation formula of the immersion in terms of the spinor field. We then apply the representation formula in R2,2 to give a new spinor representation formula for Lorentzian surfaces in 3-dimensional Minkowski space. Finally, we apply the representation formula to the local description of the flat Lorentzian surfaces with flat normal bundle and regular Gauss map in R2,2, and show that these surfaces locally depend on four real functions of one real variable, or on one holomorphic function together with two real functions of one real variable, depending on the sign of a natural invariant. © 2015 Elsevier B.V.

Filiaciones:
Bayard P.:
 Univ Nacl Autonoma Mexico, Fac Ciencias, Ciudad De Mexico, DF, Mexico

Patty V.:
 Instituto de Física y Matemáticas, U.M.S.N.H., Ciudad Universitaria, Morelia, Michoacán, CP. 58040, Mexico
ISSN: 03930440
Editorial
Elsevier, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS, Países Bajos
Tipo de documento: Article
Volumen: 95 Número:
Páginas: 74-95
WOS Id: 000358459700004
imagen Bronze