Structural, compositional and electrical characterization of Si-rich SiOx layers suitable for application in light sensors
Por:
Herrera R., Curiel M., Arias A., Nesheva D., Nedev N., Manolov E., Dzhurkov V., Perez O., Valdez B., Mateos D., Bineva I., De La Cruz W., Contreras O.
Publicada:
1 sep 2015
Resumen:
Metal-Oxide-Silicon (MOS) structures containing silicon nanoparticles (SiNPs) in three different gate dielectrics, single SiOx layer (c-Si/SiNPs-SiOx), two-region (c-Si/thermal SiOx/SiNPs-SiOx) or three-region (c-Si/thermal SiO2/SiNPs-SiOx/SiO2) oxides, were prepared on n-type (100) c-Si wafers. The silicon nanoparticles were grown by a high temperature furnace annealing of sub-stoichiometric SiOx films (x=1.15) prepared by thermal vacuum evaporation technique. Annealing in N2 at 700 or 1000 °C leads to formation of amorphous or crystalline SiNPs in a SiOx amorphous matrix with x=1.8 or 2.0, respectively. The three-region gate dielectric (thermal SiO2/SiNPs-SiO2/SiO2) was prepared by a two-step annealing of c-Si/thermal SiO2/SiOx structures at 1000 °C. The first annealing step was carried out in an oxidizing atmosphere while the second one was performed in N2. Cross-sectional Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy have proven both the nanoparticle growth and the formation of a three region gate dielectric. Annealed MOS structures with semitransparent aluminum top electrodes were characterized electrically by current/capacitance-voltage measurements in dark and under light illumination. A strong variation of the current at negative gate voltages on the light intensity has been observed in the control and annealed at 700 °C c-Si/SiNPs-SiOx/Al structures. The obtained results indicate that MOS structures with SiO1.15 gate dielectric have potential for application in light sensors in the NIR-Visible Light-UV range. © 2015 Elsevier Ltd. All rights reserved.
Filiaciones:
Herrera R.:
Institute of Engineering, Autonomous University of Baja California, Benito Juarez Blvd. esc. Calle de la Normal, s/n, Mexicali, C.P. 21280, Mexico
Curiel M.:
Institute of Engineering, Autonomous University of Baja California, Benito Juarez Blvd. esc. Calle de la Normal, s/n, Mexicali, C.P. 21280, Mexico
Arias A.:
Institute of Engineering, Autonomous University of Baja California, Benito Juarez Blvd. esc. Calle de la Normal, s/n, Mexicali, C.P. 21280, Mexico
Nesheva D.:
Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia, Bulgaria
Nedev N.:
Institute of Engineering, Autonomous University of Baja California, Benito Juarez Blvd. esc. Calle de la Normal, s/n, Mexicali, C.P. 21280, Mexico
Manolov E.:
Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia, Bulgaria
Dzhurkov V.:
Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia, Bulgaria
Perez O.:
Institute of Engineering, Autonomous University of Baja California, Benito Juarez Blvd. esc. Calle de la Normal, s/n, Mexicali, C.P. 21280, Mexico
Valdez B.:
Institute of Engineering, Autonomous University of Baja California, Benito Juarez Blvd. esc. Calle de la Normal, s/n, Mexicali, C.P. 21280, Mexico
Mateos D.:
Institute of Engineering, Autonomous University of Baja California, Benito Juarez Blvd. esc. Calle de la Normal, s/n, Mexicali, C.P. 21280, Mexico
Bineva I.:
Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia, Bulgaria
De La Cruz W.:
Univ Nacl Autonoma Mexico, Ctr Nanociencias & Nanotecnol, Ensenada, Baja California, Mexico
Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, B.C., Mexico
Contreras O.:
Univ Nacl Autonoma Mexico, Ctr Nanociencias & Nanotecnol, Ensenada, Baja California, Mexico
Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, B.C., Mexico
|