Colorful associahedra and cyclohedra


Por: Araujo-Pardo G., Hubard I., Oliveros D., Schulte E.

Publicada: 1 ene 2015
Resumen:
Every n-edge colored n-regular graph g naturally gives rise to a simple abstract n-polytope, the colorful polytope of g, whose 1-skeleton is isomorphic to g. The paper describes colorful polytope versions of the associahedron and cyclohedron. Like their classical counterparts, the colorful associahedron and cyclohedron encode triangulations and flips, but now with the added feature that the diagonals of the triangulations are colored and adjacency of triangulations requires color preserving flips. The colorful associahedron and cyclohedron are derived as colorful polytopes from the edge colored graph whose vertices represent these triangulations and whose colors on edges represent the colors of flipped diagonals. (C) 2014 Elsevier Inc. All rights reserved.

Filiaciones:
Araujo-Pardo G.:
 Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico

Hubard I.:
 Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico

Oliveros D.:
 Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico

Schulte E.:
 Department of Mathematics, Northeastern University, Boston, United States
ISSN: 00973165
Editorial
ACADEMIC PRESS INC ELSEVIER SCIENCE, 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA, Estados Unidos America
Tipo de documento: Article
Volumen: 129 Número:
Páginas: 122-141
WOS Id: 000345484300007
imagen Bronze