High-energy analysis and Levinson's theorem for the selfadjoint matrix Schrödinger operator on the half line


Por: Aktosun T., Weder R.

Publicada: 1 ene 2013
Resumen:
The matrix Schrödinger equation with a selfadjoint matrix potential is considered on the half line with the general selfadjoint boundary condition at the origin. When the matrix potential is integrable, the high-energy asymptotics are established for the related Jost matrix, the inverse of the Jost matrix, and the scattering matrix. Under the additional assumption that the matrix potential has a first moment, Levinson's theorem is derived, relating the number of bound states to the change in the argument of the determinant of the scattering matrix. © 2013 American Institute of Physics.

Filiaciones:
Aktosun T.:
 Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Dept Fis Matemat, Mexico City 01000, DF, Mexico"

Weder R.:
 Departamento de Física Matemática, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, IIMAS-UNAM, Universidad Nacional Autónoma de México, Apartado Postal 20-726, México DF 01000, Mexico
ISSN: 00222488
Editorial
AMER INST PHYSICS, CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA, Estados Unidos America
Tipo de documento: Article
Volumen: 54 Número: 1
Páginas:
WOS Id: 000314726700013
imagen