High-energy analysis and Levinson's theorem for the selfadjoint matrix Schrödinger operator on the half line
Por:
Aktosun T., Weder R.
Publicada:
1 ene 2013
Resumen:
The matrix Schrödinger equation with a selfadjoint matrix potential is considered on the half line with the general selfadjoint boundary condition at the origin. When the matrix potential is integrable, the high-energy asymptotics are established for the related Jost matrix, the inverse of the Jost matrix, and the scattering matrix. Under the additional assumption that the matrix potential has a first moment, Levinson's theorem is derived, relating the number of bound states to the change in the argument of the determinant of the scattering matrix. © 2013 American Institute of Physics.
Filiaciones:
Aktosun T.:
Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Dept Fis Matemat, Mexico City 01000, DF, Mexico"
Weder R.:
Departamento de Física Matemática, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, IIMAS-UNAM, Universidad Nacional Autónoma de México, Apartado Postal 20-726, México DF 01000, Mexico
|