Linearization of proper actions of locally compact groups on Tychonoff spaces
Por:
Antonyan N., Antonyan S.A., Rodríguez-Medina L.
Publicada:
15 abr 2012
Categoría:
Geometry and Topology
Resumen:
We prove that if G is a locally compact group acting properly (in the sense of R. Palais) on a Tychonoff space X, then X can be embedded equivariantly into a linear G-space L endowed with a linear G-action which is proper on the complement L \ {0}, in addition, G is a Lie group and tau an infinite cardinal number, then the linearizing G-space L can be chosen to be the same for all proper G-spaces X of weight w(X) <= tau. (c) 2011 Elsevier B.V. All rights reserved.
Filiaciones:
Antonyan N.:
Departamento de Matemáticas, Escuela de Ingeniería y Arquitectura, Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México, 14380 México Distrito Federal, Mexico
Antonyan S.A.:
Univ Nacl Autonoma Mexico, Dept Matemat, Fac Ciencias, Mexico City 04510, DF, Mexico
Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México Distrito Federal, Mexico
Rodríguez-Medina L.:
Univ Nacl Autonoma Mexico, Dept Matemat, Fac Ciencias, Mexico City 04510, DF, Mexico
Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México Distrito Federal, Mexico
Bronze
|