Global bifurcation of polygonal relative equilibria for masses, vortices and dNLS oscillators


Por: Garcia-Azpeitia, C, Ize, J

Publicada: 1 dic 2011
Categoría: Analysis

Resumen:
Given a regular polygonal arrangement of identical objects, turning around a central object (masses, vortices or dNLS oscillators). this paper studies the global bifurcation of relative equilibria in function of a natural parameter (central mass, central circulation or amplitude of the oscillation). The symmetries of the problem are used in order to find the irreducible representations, the linearization and, with the help of a degree theory, the symmetries of the bifurcated solutions. (C) 2011 Elsevier Inc. All rights reserved.

Filiaciones:
Garcia-Azpeitia, C:
 IIMAS UNAM, FENOMEC, Depto Matemat & Mecan, Mexico City 01000, DF, Mexico

Ize, J:
 IIMAS UNAM, FENOMEC, Depto Matemat & Mecan, Mexico City 01000, DF, Mexico
ISSN: 00220396





JOURNAL OF DIFFERENTIAL EQUATIONS
Editorial
Academic Press Inc., 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA, Estados Unidos America
Tipo de documento: Article
Volumen: 251 Número: 11
Páginas: 3202-3227
WOS Id: 000294979900008