Quantum confinement particle in a 2D quadrupole potential


Por: Reyes A., Reyes, JA, Vázquez G.J., Del Castillo-Mussot M.

Publicada: 1 jun 2010
Categoría: Physics and Astronomy (miscellaneous)

Resumen:
We analytically solve the Hamiltonian for a quantum particle confined in a cylindrical hard-wall well, subject to the action of a two-dimensional quadrupolar potential at the well center. The angular part of the wavefunction is expressed by Mathieu functions whose angular eigenenergies take negative values when the quadrupolar momentum is above a certain threshold. We show that in this case, the radial part of the eigenfunctions is expressed in terms of Bessel functions of an imaginary order which are imaginary-value functions whose phases are not well defined at the origin. However, the density of probability is well defined everywhere and the wave function satisfies hard-wall boundary conditions for any value of the parameters involved. We discuss an alternative criterion for determining the eigenenergies of the system based on the expected value of the symmetrized radial momentum.

Filiaciones:
Reyes A.:
 Departamento de Recuperación de Hidrocarburos, Eje Central Lázaro Cárdenas Norte 152, San Bartolo Atepehuacan, 07730, DF, Mexico

Reyes, JA:
 Univ Nacl Autonoma Mexico, Inst Fis, Dept Estado Solido & Fis Quim, Mexico City 01000, DF, Mexico

Vázquez G.J.:
 Univ Nacl Autonoma Mexico, Inst Fis, Dept Estado Solido & Fis Quim, Mexico City 01000, DF, Mexico

Del Castillo-Mussot M.:
 Univ Nacl Autonoma Mexico, Inst Fis, Dept Estado Solido & Fis Quim, Mexico City 01000, DF, Mexico
ISSN: 0035001X
Editorial
SOC MEXICANA FISICA, APARTADO POSTAL 70-348, COYOACAN 04511, MEXICO, México
Tipo de documento: Article
Volumen: 56 Número: 1
Páginas: 1-7
WOS Id: 000279326300001

MÉTRICAS