Variational bounds for anisotropic elastic multiphase composites with different shapes of inclusions
Por:
Rodríguez-Ramos R., Guinovart-Díaz R., Bravo-Castillero J., Sabina F.J., Berger H., Kari S., Gabbert U.
Publicada:
1 ago 2009
Categoría:
Mechanical Engineering
Resumen:
In the present work, unified formulae for the overall elastic bounds for multiphase transversely isotropic composites with different geometrical types of inclusions embedded in a matrix are calculated, including the spherical and long or short continuous cylindrical fiber cases. The influence of the different geometrical configurations of the inclusions on the composites is studied. The transversely isotropic effective bounds are obtained by applying the variational formulation for anisotropic composites developed by Willis, which relies on expressions for the static transversely isotropic Green's function. Some numerical calculations and comparisons with the effective coefficients derived from the self-consistent approach, asymptotic homogenization method, and finite element method (FEM) are shown for different aspect ratio values, exhibiting good agreement. © 2008 Springer-Verlag.
Filiaciones:
Rodríguez-Ramos R.:
Facultad de Matemática y Computación, Universidad de la Habana, San Lázaro y L, Vedado, CP 10400, Habana 4, Cuba
Guinovart-Díaz R.:
Facultad de Matemática y Computación, Universidad de la Habana, San Lázaro y L, Vedado, CP 10400, Habana 4, Cuba
Bravo-Castillero J.:
Facultad de Matemática y Computación, Universidad de la Habana, San Lázaro y L, Vedado, CP 10400, Habana 4, Cuba
Sabina F.J.:
Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Mexico City 01000, DF, Mexico
Berger H.:
Institute of Mechanics, Otto-von-Guericke-University of Magdeburg, Universitaetsplatz 2, Magdeburg 39106, Germany
Kari S.:
Institute of Mechanics, Otto-von-Guericke-University of Magdeburg, Universitaetsplatz 2, Magdeburg 39106, Germany
Gabbert U.:
Institute of Mechanics, Otto-von-Guericke-University of Magdeburg, Universitaetsplatz 2, Magdeburg 39106, Germany
|