Variational bounds for anisotropic elastic multiphase composites with different shapes of inclusions


Por: Rodríguez-Ramos R., Guinovart-Díaz R., Bravo-Castillero J., Sabina F.J., Berger H., Kari S., Gabbert U.

Publicada: 1 ago 2009
Categoría: Mechanical Engineering

Resumen:
In the present work, unified formulae for the overall elastic bounds for multiphase transversely isotropic composites with different geometrical types of inclusions embedded in a matrix are calculated, including the spherical and long or short continuous cylindrical fiber cases. The influence of the different geometrical configurations of the inclusions on the composites is studied. The transversely isotropic effective bounds are obtained by applying the variational formulation for anisotropic composites developed by Willis, which relies on expressions for the static transversely isotropic Green's function. Some numerical calculations and comparisons with the effective coefficients derived from the self-consistent approach, asymptotic homogenization method, and finite element method (FEM) are shown for different aspect ratio values, exhibiting good agreement. © 2008 Springer-Verlag.

Filiaciones:
Rodríguez-Ramos R.:
 Facultad de Matemática y Computación, Universidad de la Habana, San Lázaro y L, Vedado, CP 10400, Habana 4, Cuba

Guinovart-Díaz R.:
 Facultad de Matemática y Computación, Universidad de la Habana, San Lázaro y L, Vedado, CP 10400, Habana 4, Cuba

Bravo-Castillero J.:
 Facultad de Matemática y Computación, Universidad de la Habana, San Lázaro y L, Vedado, CP 10400, Habana 4, Cuba

Sabina F.J.:
 Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Mexico City 01000, DF, Mexico

Berger H.:
 Institute of Mechanics, Otto-von-Guericke-University of Magdeburg, Universitaetsplatz 2, Magdeburg 39106, Germany

Kari S.:
 Institute of Mechanics, Otto-von-Guericke-University of Magdeburg, Universitaetsplatz 2, Magdeburg 39106, Germany

Gabbert U.:
 Institute of Mechanics, Otto-von-Guericke-University of Magdeburg, Universitaetsplatz 2, Magdeburg 39106, Germany
ISSN: 14320681
Editorial
SPRINGER, 233 SPRING ST, NEW YORK, NY 10013 USA, Estados Unidos America
Tipo de documento: Article
Volumen: 79 Número: 8
Páginas: 695-708
WOS Id: 000267214800002