A NOTE ON THE LEAST TOTIENT OF A RESIDUE CLASS
Por:
Garaev, MZ
Publicada:
1 mar 2009
Categoría:
Mathematics (miscellaneous)
Resumen:
Let q be a large prime number, a be any integer and epsilon be a fixed small positive quantity. Friedlander and Shparlinksi (Least totient in a residue class, Bull. London Math. Soc. 39 (2007), 425-432) have shown that there exists a positive integer n < q(5/2+epsilon) such that phi(n) falls into the residue class a (mod q. Here, phi(n) denotes Euler's function. In the present paper we improve this bound to n < q(2 + epsilon).
Filiaciones:
Garaev, MZ:
Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58089, Michoacan, Mexico
|