Classical and quantum motion in an inverse square potential


Por: Ávila-Aoki M., Cisneros C., Martínez-y-Romero R.P., Nunez-Yepez, HN, Salas-Brito A.L.

Publicada: 19 ene 2009
Categoría: Physics and Astronomy (miscellaneous)

Resumen:
Classical motion in an inverse square potential is shown to be equivalent to free motion on a hyperbola. The existence of a classical splitting between the q > 0 and q < 0 regions of motion is demonstrated. We show that this last property may be regarded as the classical counterpart of the superselection rule occurring in the corresponding quantum problem. We solve the quantum problem in momentum space finding that there is no way of quantizing its energy but that the eigenfunctions suffice to describe the single renormalized bound state of the system. The dynamical symmetry of the classical problem is found to be O(1, 1). Both this symmetry and the symmetry of inversion through the origin are found to be broken. (C) 2008 Elsevier B.V. All rights reserved.

Filiaciones:
Ávila-Aoki M.:
 Centro Universitario Valle de Chalco, Universidad Autónoma del Estado de México, Valle de Chalco, CP 56615 Estado de México, Mexico

Cisneros C.:
 Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Cuernavaca 62131, Morelos, Mexico

Martínez-y-Romero R.P.:
 Univ Nacl Autonoma Mexico, Fac Ciencias, Coyoacan 04000, DF, Mexico

Salas-Brito A.L.:
 Laboratorio de Sistemas Dinámicos, Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Apartado Postal 21-267, CP 04000 Coyoacán, DF, Mexico
ISSN: 03759601
Editorial
ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS, Países Bajos
Tipo de documento: Article
Volumen: 373 Número: 4
Páginas: 418-421
WOS Id: 000263207600004