A colorful theorem on transversal lines to plane convex sets


Por: Arocha, JL, Bracho, J, Montejano, L

Publicada: 1 ene 2008
Resumen:
We prove a colorful version of Hadwiger's transversal line theorem; if a family of colored and numbered convex sets in the plane has the property that any three differently colored membres have a transversal line that meet the sets consistently with the numbering, then there exists a color such that all the convex sets of that color have a transversal line.

Filiaciones:
Arocha, JL:
 Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico

Bracho, J:
 Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico

Montejano, L:
 Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
ISSN: 02099683





Combinatorica
Editorial
Springer-Verlag, 233 SPRING ST, NEW YORK, NY 10013 USA, Alemania
Tipo de documento: Article
Volumen: 28 Número: 4
Páginas: 379-384
WOS Id: 000259641100001