On a heterochromatic number for hypercubes
Por:
Montellano-Ballesteros, JJ, Neumann-Lara, V, Rivera-Campo, E
Publicada:
28 ago 2008
Resumen:
The neighbourhood heterochromatic number nh(c) (G) of a non-empty graph G is the smallest integer l such that for every colouring of G with exactly l colours, G contains a vertex all of whose neighbours have different colours. We prove that lim(n ->infinity) (nh(c) (Gn) - 1)/ vertical bar V (G(n))vertical bar = 1 for any connected graph G with at least two vertices. We also give upper and lower bounds for the neighbourhood heterochromatic number of the 2(n)-dimensional hypercube. (C) 2007 Elsevier B.V. All rights reserved.
Filiaciones:
Montellano-Ballesteros, JJ:
Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
Neumann-Lara, V:
Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
Rivera-Campo, E:
Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Mexico City 09340, DF, Mexico
|