The weight distribution of a family of Lagrangian-Grassmannian codes
Por:
Carrillo-Pacheco J., Vega G., Zaldívar F.
Publicada:
1 ene 2015
Resumen:
Using Plücker coordinates we construct a matrix whose columns parametrize all projective isotropic lines in a symplectic space E of dimension 4 over a finite field (image Found)q. As an application of this construction we explicitly obtain the smallest subfamily of algebro-geometric codes defined by the corresponding Lagrangian-Grassmannian variety. Furthermore, we show that this subfamily is a class of three-weight linear codes over (image Found)q of length (q4 -1)/(q -1), dimension 5, and minimum Hamming distance q3 - q. © Springer International Publishing Switzerland 2015.
Filiaciones:
Carrillo-Pacheco J.:
Academia de Matemáticas, Universidad Autónoma de la Ciudad de México, México, D.F, 09790, Mexico
Vega G.:
Dirección General de Cómputo y de Tecnologías de Información y Comunicación, Universidad Nacional Autónoma de México, México D.F, 04510, Mexico
Zaldívar F.:
Departamento de Matemáticas, Universidad Autónoma Metropolitana-I, México D.F, 09340, Mexico
|