The weight distribution of a family of Lagrangian-Grassmannian codes


Por: Carrillo-Pacheco J., Vega G., Zaldívar F.

Publicada: 1 ene 2015
Resumen:
Using Plücker coordinates we construct a matrix whose columns parametrize all projective isotropic lines in a symplectic space E of dimension 4 over a finite field (image Found)q. As an application of this construction we explicitly obtain the smallest subfamily of algebro-geometric codes defined by the corresponding Lagrangian-Grassmannian variety. Furthermore, we show that this subfamily is a class of three-weight linear codes over (image Found)q of length (q4 -1)/(q -1), dimension 5, and minimum Hamming distance q3 - q. © Springer International Publishing Switzerland 2015.

Filiaciones:
Carrillo-Pacheco J.:
 Academia de Matemáticas, Universidad Autónoma de la Ciudad de México, México, D.F, 09790, Mexico

Vega G.:
 Dirección General de Cómputo y de Tecnologías de Información y Comunicación, Universidad Nacional Autónoma de México, México D.F, 04510, Mexico

Zaldívar F.:
 Departamento de Matemáticas, Universidad Autónoma Metropolitana-I, México D.F, 09340, Mexico
ISSN: 03029743
Editorial
Springer Verlag, GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND, Suiza
Tipo de documento: Conference Paper
Volumen: 9084 Número:
Páginas: 240-246
WOS Id: 000362514900019