On frac(1, 2)-homogeneous continua


Por: Neumann-Lara V., Pellicer-Covarrubias P., Puga I.

Publicada: 1 ene 2006
Resumen:
A continuum is frac(1, 2)-homogeneous provided there are exactly two orbits for the action of the group of homeomorphisms of the continuum onto itself. In this paper we study some relations between frac(1, 2)-homogeneous continua and their set of cut points. We also prove that if X is a hereditarily decomposable continuum whose proper, nondegenerate subcontinua are arc-like, then X is frac(1, 2)-homogeneous if and only if X is an arc. Suitable examples and counterexamples are given. © 2005 Elsevier B.V. All rights reserved.
ISSN: 01668641





TOPOLOGY AND ITS APPLICATIONS
Editorial
ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS, Países Bajos
Tipo de documento: Article
Volumen: 153 Número: 14
Páginas: 2518-2527
WOS Id: 000239471000015